Philadelphia University

Lecture Notes for 650364

Probability \& Random Variables

Lecture 7: Multiple Random Variables

Department of Communication \& Electronics Engineering

Instructor Dr. Qadri Hamarsheh

Email: qhamarsheh@philadelphia.edu.jo
Website: http://www.philadelphia.edu.jo/academics/qhamarsheh
\checkmark Discrete Case: If X and Y are two discrete random variables, we define the joint probability function of X and Y by

$$
P(X=x, Y=y)=f(x, y)
$$

Where

$$
\begin{aligned}
& \text { 1. } f(x, y) \geq 0 \\
& \text { 2. } \sum_{x} \sum_{y} f(x, y)=1
\end{aligned}
$$

\checkmark Suppose that X can assume any one of m values $x_{1}, x_{2}, \ldots, x_{m}$ and Y can assume any one of n values $y_{1}, y_{2}, \ldots, y_{n}$. Then the probability of the event that $X=x_{j}$ and $Y=y_{k}$ is given by

$$
P\left(X=x_{j}, Y=y_{k}\right)=f\left(x_{j}, y_{k}\right)
$$

\checkmark A joint probability function for X and Y can be represented by a joint probability table
\checkmark The probability that $X=x_{j}$ is obtained by adding all entries in the row corresponding to x_{i} and is given by

$$
P\left(X=x_{j}\right)=f_{1}\left(x_{j}\right)=\sum_{k=1}^{n} f\left(x_{j}, y_{k}\right)
$$

$X Y$	y_{1}	y_{2}	\cdots	y_{n}	Totals \downarrow
x_{1}	$f\left(x_{1}, y_{1}\right)$	$f\left(x_{1}, y_{2}\right)$	\ldots	$f\left(x_{1}, y_{n}\right)$	$f_{1}\left(x_{1}\right)$
x_{2}	$f\left(x_{2}, y_{1}\right)$	$f\left(x_{2}, y_{2}\right)$	\ldots	$f\left(x_{2}, y_{n}\right)$	$f_{1}\left(x_{2}\right)$
\vdots	\vdots	\vdots		\vdots	\vdots
x_{m}	$f\left(x_{m}, y_{1}\right)$	$f\left(x_{m}, y_{2}\right)$	\ldots	$f\left(x_{m}, y_{n}\right)$	$f_{1}\left(x_{m}\right)$
Totals \rightarrow	$f_{2}\left(y_{1}\right)$	$f_{2}\left(y_{2}\right)$	\ldots	$f_{2}\left(y_{n}\right)$	1

\checkmark Similarly the probability that $Y=y_{k}$ is obtained by adding all entries in the column corresponding to y_{k} and is given by

$$
P\left(Y=y_{k}\right)=f_{2}\left(y_{k}\right)=\sum_{j=1}^{m} f\left(x_{j}, y_{k}\right)
$$

\checkmark We often refer to $f_{1}\left(x_{j}\right)$ and $f_{2}\left(y_{k}\right)$ [or simply $f_{1}(x)$ and $f_{2}(y)$]as the marginal probability functions of X and Y, respectively
\checkmark It should also be noted that

$$
\sum_{j=1}^{m} f_{1}\left(x_{j}\right)=1 \quad \sum_{k=1}^{n} f_{2}\left(y_{k}\right)=1
$$

Which can be written

$$
\sum_{j=1}^{m} \sum_{k=1}^{n} f\left(x_{j}, y_{k}\right)=1
$$

\checkmark This is simply the statement that the total probability of all entries is 1. The joint distribution function of X and Y is defined by

$$
F(x, y)=P(X \leq x, Y \leq y)=\sum_{u \leq x} \sum_{v \leq y} f(u, v)
$$

In Table, $F(x, y)$ is the sum of all entries for which $x_{j} \leq x$ and $y_{k} \leq y$.
\checkmark Continuous Case: the joint probability function for the random variables X and Y (or, as it is more commonly called, the joint density function of X and Y) is defined by

$$
\begin{aligned}
& \text { 1. } f(x, y) \geq 0 \\
& \text { 2. } \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=1
\end{aligned}
$$

\checkmark Graphically $z=f(x, y)$ represents a surface, called the probability surface
\checkmark The probability that X lies between a and b while Y lies between c and d is given graphically by the shaded volume of Fig. and mathematically by

$$
P(a<X<b, c<Y<d)=\int_{x=a}^{b} \int_{y=c}^{a} f(x, y) d x d y
$$

\checkmark The joint distribution function of X and Y in this case is defined by

$$
F(x, y)=P(X \leq x, Y \leq y)=\int_{u=-\infty}^{x} \int_{v=-\infty}^{y} f(u, v) d u d v
$$

\checkmark It follows in analogy that

$$
\frac{\partial^{2} F}{\partial x \partial y}=f(x, y)
$$

i.e., the density function is obtained by differentiating the distribution function with respect to x and y.
\checkmark The marginal distribution functions, or simply the distribution functions, of X and Y, respectively

$$
\begin{aligned}
& P(X \leq x)=F_{1}(x)=\int_{u=-\infty}^{x} \int_{v=-\infty}^{\infty} f(u, v) d u d v \\
& P(Y \leq y)=F_{2}(y)=\int_{u=-\infty}^{\infty} \int_{v=-\infty}^{y} f(u, v) d u d v
\end{aligned}
$$

The derivatives of the above equations with respect to x and y are then called the marginal density functions, or simply the density functions, of X and Y and are given by

$$
f_{1}(x)=\int_{v=-\infty}^{\infty} f(x, v) d v \quad f_{2}(y)=\int_{u=-\infty}^{\infty} f(u, y) d u
$$

Independent Random Variables

\checkmark Suppose that X and Y are discrete random variables. If the events $X=x$ and $Y=y$ are independent events for all x and y, then we say that X and Y are independent random variables. In such case,

$$
P(X=x, Y=y)=P(X=x) P(Y=y)
$$

Or

$$
f(x, y)=f_{1}(x) f_{2}(y)
$$

- The joint probability function $f(x, y)$ can be expressed as the product of a function of x alone and a function of y alone, X and \boldsymbol{Y} are independent.
\checkmark If X and Y are continuous random variables, we say that they are independent random variables if the events $X \leq x$ and $Y \leq y$ are independent events for all x and y. In such case we can write

$$
P(X \leq x, Y \leq y)=P(X \leq x) P(Y \leq y)
$$

Or

$$
F(x, y)=F_{1}(x) F_{2}(y)
$$

\checkmark Where $F_{1}(x)$ and $F_{2}(y)$ are the marginal distribution functions of X and \boldsymbol{Y}, respectively. If, however, $\boldsymbol{F}(x, y)$ cannot be so expressed as a product, then X and Y are dependent.

Conditional Distributions

\checkmark We already know that if $P(\boldsymbol{A})>0$,

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}
$$

\checkmark If X and Y are discrete random variables and we have the events (A :
$X=x)$, $(B: Y=y)$, then above equation becomes

$$
P(Y=y \mid X=x)=\frac{f(x, y)}{f_{1}(x)}
$$

Where $f(x, y)=P(X=x, Y=y)$ is the joint probability function and $f_{l}(x)$ is the marginal probability function for X. We define

$$
f(y \mid x) \equiv \frac{f(x, y)}{f_{1}(x)}
$$

and call it the conditional probability function of Y given X. \checkmark Similarly, the conditional probability function of X given Y is

$$
f(x \mid y) \equiv \frac{f(x, y)}{f_{2}(y)}
$$

\checkmark These ideas are easily extended to the case where X, Y continuous random variables are. For example, the conditional density function of Y given X is

$$
f(y \mid x) \equiv \frac{f(x, y)}{f_{1}(x)}
$$

Examples

\checkmark Example 1: The joint probability function of two discrete random variables X and Y is given by $f(x, y)=c(2 x+y)$, where x and y can assume all integers such that $0 \leq x \leq 2,0 \leq y \leq 3$, and $f(x, y)=$ 0 otherwise.
a) Find the value of the constant c.
b) Find $P(X=2, Y=1)$.
c) Find $P(X \geq 1, Y \leq 2)$.

- Solution
a) The sample points (x, y) for which probabilities are different from zero are indicated in Fig. The probabilities associated with these points, given by $c(2 x+y)$, are shown in Table. Since the grand total, $42 c$, must equal 1 , we have $c=\frac{1}{42}$.

b) From Table

$$
P(X=2, Y=1)=5 c+\frac{5}{42}
$$

c) From Table

$$
\begin{aligned}
P(X \geq 1, Y \leq 2) & =\sum_{x \geq 1} \sum_{y \leq 2} f(x, y) \\
& =(2 c+3 c+4 c)(4 c+5 c+6 c) \\
& =24 c=\frac{24}{42}=\frac{4}{7}
\end{aligned}
$$

\checkmark Example 2: Find the marginal probability functions (a) of X and
(b) of Y for the random variables of example 1.

- Solution
a) The marginal probability function for X is given by $P(X=x)=f_{1}(x)$ and can be obtained from the margin totals in the right-hand column of the table.

$$
P(X=x)=f_{1}(x)=\left\{\begin{array}{cl}
6 c=1 / 7 & x=0 \\
14 c=1 / 3 & x=1 \\
22 c=11 / 21 & x=2
\end{array}\right.
$$

Check: $\frac{1}{7}+\frac{1}{3}+\frac{11}{21}=1$
b) The marginal probability function for \boldsymbol{Y} is given by $P(Y=y)=f_{2}(y)$ and can be obtained from the margin totals in the last row of the table.

$$
P(Y=y)=f_{2}(y)=\left\{\begin{array}{rlr}
6 c=1 / 7 & y=0 \\
9 c=3 / 14 & y=1 \\
12 c=2 / 7 & y=2 \\
15 c=5 / 14 & y=3
\end{array}\right.
$$

Check: $\frac{1}{7}+\frac{3}{14}+\frac{2}{7}+\frac{5}{14}=1$
\checkmark Example 3: Show that the random variables X and Y of example 1 are dependent.

- Solution

If the random variables X and Y are independent, then

$$
P(X=x, Y=y)=P(X=x) P(Y=y)
$$

But, as seen from example 1 and example 2

$$
P(X=2, Y=1)=\frac{5}{42} \quad P(X=2)=\frac{11}{21} \quad P(Y=1)=\frac{3}{14}
$$

So that

$$
P(X=2, Y=1) \neq P(X=2) P(Y=1)
$$

The result also follows from the fact that the joint probability function $(2 x+y) / 42$ cannot be expressed as a function of x alone times a function of y alone.
Example 4: The joint density function of two continuous random variables X and Y is

$$
f(x, y)= \begin{cases}c x y & 0<x<4,1<y<5 \\ 0 & \text { otherwise }\end{cases}
$$

a) Find the value of the constant c.
b) Find $P(1<X<2,2<Y<3)$.
c) Find $P(X \geq 3, Y \leq 2)$.

- Solution
a) We must have the total probability equal to 1 , i.e.,

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=1
$$

Using the definition of $f(x, y)$, the integral has the value

$$
\begin{aligned}
\int_{x=0}^{4} \int_{y=1}^{5} c x y d x d y & =c \int_{x=0}^{4}\left[\int_{y=1}^{5} x y d y\right] d x \\
& =\left.c \int_{z=0}^{4} \frac{x y^{2}}{2}\right|_{y=1} ^{5} d x=c \int_{x=0}^{4}\left(\frac{25 x}{2}-\frac{x}{2}\right) d x \\
& =c \int_{x=0}^{4} 12 x d x=\left.c\left(6 x^{2}\right)\right|_{x=0} ^{4}=96 c \\
& \text { Then } 96 c=1 \text { and } c=1 / 96
\end{aligned}
$$

(b) Using the value of c found in (a), we have

$$
\begin{aligned}
P(1<X<2,2<Y<3) & =\int_{x=1}^{2} \int_{y=2}^{3} \frac{x y}{96} d x d y \\
& =\frac{1}{96} \int_{x=1}^{2}\left[\int_{y=2}^{3} x y d y\right] d x=\left.\frac{1}{96} \int_{x=1}^{2} \frac{x y^{2}}{2}\right|_{y=2} ^{3} d x \\
& =\frac{1}{96} \int_{x=1}^{2} \frac{5 x}{2} d x=\left.\frac{5}{192}\left(\frac{x^{2}}{2}\right)\right|_{1} ^{2}=\frac{5}{128}
\end{aligned}
$$

(c)

$$
\begin{aligned}
P(X \geq 3, Y \leq 2) & =\int_{x=3}^{4} \int_{y=1}^{2} \frac{x y}{96} d x d y \\
& =\frac{1}{96} \int_{x=3}^{4}\left[\int_{y=1}^{2} x y d y\right] d x=\left.\frac{1}{96} \int_{x=3}^{4} \frac{x y^{2}}{2}\right|_{y=1} ^{2} d x \\
& =\frac{1}{96} \int_{x=3}^{4} \frac{3 x}{2} d x=\frac{7}{128}
\end{aligned}
$$

\checkmark Example 5: Find the marginal distribution functions (a) of X and (b) of Y for example 4.

- Solution
a) The marginal distribution function for X if $0 \leq x<4$ is

$$
\begin{aligned}
F_{1}(x) & =P(X \leq x)=\int_{u=-\infty}^{x} \int_{v=-\infty}^{\infty} f(u, v) d u d v \\
& =\int_{u=0}^{x} \int_{v=1}^{5} \frac{u v}{96} d u d v \\
& =\frac{1}{96} \int_{u=0}^{x}\left[\int_{v=1}^{5} u v d v\right] d u=\frac{x^{2}}{16}
\end{aligned}
$$

$$
\text { For } x \geq 4, F_{1}(x)=1 \text {; for } x<0, F_{1}(x)=0 \text {. Thus }
$$

$$
F_{1}(x)=\left\{\begin{array}{lr}
0 & x<0 \\
x^{2 / 16} & 0 \leq x<4 \\
1 & x \geq 4
\end{array}\right.
$$

b) The marginal distribution function for Y if $1 \leq y<5$ is

$$
\begin{aligned}
F_{2}(y)=P(Y \leq y) & =\int_{u=-\infty}^{\infty} \int_{v=1}^{y} f(u, v) d u d v \\
& =\int_{u=0}^{4} \int_{v=1}^{y} \frac{u v}{96} d u d v=\frac{y^{2}-1}{24}
\end{aligned}
$$

$$
\text { For } y \geq 5, F_{2}(y)=1 \text {. For } y<1, F_{2}(y)=0 . \text { Thus }
$$

$$
F_{2}(y)=\left\{\begin{array}{lr}
0 & y<1 \\
\left(y^{2}-1\right) / 24 & 1 \leq y<5 \\
1 & y \geq 5
\end{array}\right.
$$

\checkmark Example 6: Find (a) $f(y \mid 2)$, (b) $P(Y=1 \mid X=2)$ for the distribution of example 1

- Solution: Using the result in example 1 and example 2, we have:
(a)

$$
f(y \mid x)=\frac{f(x, y)}{f_{1}(x)}=\frac{(2 x+y) / 42}{f_{1}(x)}
$$

so that with $x=2$
(b)

$$
\begin{gathered}
f(y \mid 2)=\frac{(4+y) / 42}{11 / 21}=\frac{4+y}{22} \\
P(Y=1 \mid X=2)=f(1 \mid 2)=\frac{5}{22}
\end{gathered}
$$

\checkmark Example 7: If X and Y have the joint density function

$$
f(x, y)= \begin{cases}\frac{3}{4}+x y & 0<x<1,0<y<1 \\ 0 & \text { otherwise }\end{cases}
$$

Find (a) $f(y \mid x)$, (b) $P\left(Y>\frac{1}{2} \left\lvert\, \frac{1}{2}<X<\frac{1}{2}+d x\right.\right)$

- Solution:

(a) For $0<x<1$,

and

$$
\begin{gathered}
f_{1}(x)=\int_{0}^{1}\left(\frac{3}{4}+x y\right) d y=\frac{3}{4}+\frac{x}{2} \\
f(y \mid x)=\frac{f(x, y)}{f_{1}(x)}= \begin{cases}\frac{3+4 x y}{3+2 x} & 0<y<1 \\
0 & \text { other } y\end{cases}
\end{gathered}
$$

For other values of $x, f(y \mid x)$ is not defined.
(b)

$$
P\left(Y>\frac{1}{2} \left\lvert\, \frac{1}{2}<X<\frac{1}{2}+d x\right.\right)=\int_{1 / 2}^{\infty} f\left(y \left\lvert\, \frac{1}{2}\right.\right) d y=\int_{1 / 2}^{1} \frac{3+2 y}{4} d y=\frac{9}{16}
$$

Vector Random Variables

\checkmark Let X and Y denote two random variables defined on a sample space S, where specific values of X and Y are denoted by x and y. Then any ordered pair of numbers (x, y) may be considered a random point in $x y$ plane. The point may be taken a specific value of a vector random variable.
\checkmark The plane of all points (\mathbf{x}, y) in the ranges of \mathbf{X} and \mathbf{Y} may be considered a new sample space called a joint sample space S_{J}.

\checkmark As in the case of one random variable, let us define events \mathbb{A} and B by

$$
A=\{X \leq x\} \quad \text { and } \quad B=\{Y \leq y\}
$$

\checkmark The event $\mathbb{A} \cap B$ defined on S corresponds to the joint event $\{\mathbf{X} \leq \mathbf{x}$ and $\mathbf{Y} \leq \mathrm{y}\}$ defined on S_{J}.

Joint Distribution and its Properties

\checkmark The probabilities of the two events $\mathbb{A}=\{\mathbf{X} \leq X\}$ and $B=\{Y \leq y\}$ have distribution functions:

$$
F_{X}(x)=P\{X \leq x\} \quad \text { and } \quad F_{Y}(y)=P\{Y \leq y\}
$$

\checkmark We define the probability of the joint event $\{X \leq x$ and $Y \leq y\}$ by a joint probability distribution function

$$
F_{X, Y}(x, y)=P\{X \leq x, Y \leq y\}
$$

\checkmark It should be clear that

$$
P\{X \leq x, Y \leq y\}=P(A \cap B)
$$

\checkmark Example: Assume that the joint sample space S_{J} has only three possible elements $(\mathbf{1}, \mathbf{1}),(2,1)$, and $(3,3)$. The probabilities of these elements are to be $\mathbf{P}(\mathbf{1}, \mathbf{1})=\mathbf{0 . 2} \mathbf{P}(\mathbf{2}, \mathbf{1})=\mathbf{0 . 3}$, and $\mathbf{P (3 , 3) = 0 . 5}$
\circ The distribution function:

$$
\begin{aligned}
F_{x^{\prime}, x}(x, y) & =0.2 x(x-1) x(y-1)+0.3 x(x-2) x(y-1) \\
& +0.5 x(x-3) x(y-3)
\end{aligned}
$$

\checkmark Joint Distribution for Discrete Random Variables:

- The joint distribution function of discrete random variables X and Y is given by:

$$
F_{X, Y}(x, y)=\sum_{n=1}^{N} \sum_{m=1}^{M} P\left(x_{n}, y_{m}\right) u\left(x-x_{n}\right) u\left(y-y_{m}\right)
$$

- Example:

$$
\begin{aligned}
F_{X, Y}(x, y) & =0.2 u(x-1) u(y-1)+0.3 u(x-2) u(y-1) \\
& +0.5 u(x-3) u(y-3)
\end{aligned}
$$

\checkmark Properties of the Joint Distribution:

$$
\begin{array}{|l}
\text { 1. } \quad F_{X, Y}(-\infty,-\infty)=0, \quad F_{X, Y}(-\infty, y)=0, F_{X, Y}(x,-\infty)=0 \\
\text { 2. } \quad F_{X, Y}(\infty, \infty)=1 \\
\text { 3. } \quad 0 \leq F_{X, Y}(x, y) \leq 1 \\
\text { 4. } \quad F_{X, Y}(x, y) \text { is a nondecreas ing function } \\
\text { 5. } P\left\{x_{1}<X \leq x_{2}, y_{1}<Y \leq y_{2}\right\}= \\
\quad F_{X, Y}\left(x_{2}, y_{2}\right)+F_{X, Y}\left(x_{1}, y_{1}\right) \\
\quad-F_{X, Y}\left(x_{2}, y_{1}\right)-F_{X, Y}\left(x_{1}, y_{2}\right) \\
\text { 6. } \quad F_{X, Y}(x, \infty)=F_{X}(x) \quad \text { and } \quad F_{X, Y}(\infty, y)=F_{Y}(y) \\
\hline
\end{array}
$$

\checkmark Marginal Distribution Functions:

- Property 6 above states that the marginal distribution functions obtained by

$$
F_{X}(x)=F_{X, Y}(x, \infty) \quad \text { and } \quad F_{Y}(y)=F_{X, Y}(\infty, y)
$$

o Example:

$$
\begin{aligned}
F_{X, Y}(x, y) & =0.2 u(x-1) u(y-1)+0.3 u(x-2) u(y-1) \\
& +0.5 u(x-3) u(y-3)
\end{aligned}
$$

the marginal distribution functions:

$$
F_{x}(x)=0.2 u(x-1)+0.3 u(x-2)+0.5 u(x-3)
$$

$$
F_{Y}(y)=0.2 u(y-1)+0.3 u(y-1)+0.5 u(y-3)
$$

$$
=0.5 u(y-1)+0.5 u(y-3)
$$

Joint Density and its Properties

\checkmark The joint probability density is defined by the second derivative of the joint distribution function:

$$
f_{X, Y}(x, y)=\frac{\partial^{2} F_{X, Y}(x, y)}{\partial x \partial y}
$$

\checkmark Joint Density for Discrete Random Variables: The joint density function of discrete random variables X and Y is given by:

$$
f_{X, Y}(x, y)=\sum_{n=1}^{N} \sum_{m=1}^{M} P\left(x_{n}, y_{m}\right) \delta\left(x-x_{n}\right) \delta\left(y-y_{m}\right)
$$

- Example: Assume that the joint sample space S_{J} has only three possible elements (1,1), $(2,1)$, and (3,3). The probabilities of these elements are to be $\mathbf{P}(\mathbf{1}, \mathbf{1})=0.2, \mathbf{P}(2,1)=0.3$, and $\mathbf{P (3 , 3) = 0 . 5}$
- The density function:

$$
\begin{aligned}
f_{X, Y}(x, y) & =0.2 \delta(x-1) \delta(y-1)+0.3 \delta(x-2) \delta(y-1) \\
& +0.5 \delta(x-3) \delta(y-3)
\end{aligned}
$$

\checkmark Properties of the Joint Density:

$$
\begin{aligned}
& \text { 1. } f_{X, Y}(x, y) \geq \mathbf{0} \\
& \text { 2. } \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) d x d y=1 \\
& \text { 3. } F_{X, Y}(x, y)=\int_{-\infty}^{y} \int_{-\infty}^{x} f_{X, Y}\left(\xi_{1}, \xi_{2}\right) d \xi_{1} d \xi_{2} \\
& \text { 4. } \quad F_{X}(x)=\int_{-\infty}^{x} \int_{-\infty}^{\infty} f_{X, Y}\left(\xi_{1}, \xi_{2}\right) d \xi_{2} d \xi_{1} \\
& \quad F_{Y}(y)=\int_{-\infty}^{y} \int_{-\infty}^{\infty} f_{X, Y}\left(\xi_{1}, \xi_{2}\right) d \xi_{1} d \xi_{2}
\end{aligned}
$$

Marginal
Distribution
Functions
5. $P\left\{x_{1}<X \leq x_{2}, y_{1}<Y \leq y_{2}\right\}=\int_{y_{1}}^{y_{2}} \int_{x_{1}}^{x_{2}} f_{X, Y}(x, y) d x d y$
6. $f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y$

Marginal Density
$f_{Y}(y)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d x$
Functions

\checkmark Marginal Density Functions:

o Property 6 above states that the marginal distribution functions obtained by

$$
f_{X}(x)=\frac{d F_{X}(x)}{d x} \quad \text { and } \quad f_{Y}(y)=\frac{d F_{Y}(y)}{d y}
$$

- Example:

$$
\begin{aligned}
F_{X . Y}(x, y) & =0.2 u(x-1) u(y-1)+0.3 u(x-2) u(y-1) \\
& +0.5 u(x-3) u(y-3)
\end{aligned}
$$

- the marginal density functions:

$$
\begin{aligned}
f_{X}(x) & =0.2 \delta(x-1)+0.3 \delta(x-2)+0.5 \delta(x-3) \\
f_{Y}(y) & =0.2 \delta(y-1)+0.3 \delta(y-1)+0.5 \delta(y-3) \\
& =0.5 \delta(y-1)+0.5 \delta(y-3)
\end{aligned}
$$

\circ Example: Find the value of b so that the following function is a valid joint density function

$$
g(x, y)=\left\{\begin{array}{lr}
b e^{-x} \cos (y) & 0 \leq x \leq 2 \text { and } 0 \leq y \leq \pi / 2 \\
0 & \text { all other } x \text { and } y
\end{array}\right.
$$

- Solution:

$$
\begin{aligned}
\int_{0}^{\pi / 2} \int_{0}^{2} b e^{-x} \cos (y) d x d y & =b \int_{0}^{2} e^{-x} d x \int_{0}^{\pi / 2} \cos (y) d y \\
& =b\left(1-e^{-2}\right)=1
\end{aligned}
$$

then

$$
b=\frac{1}{1-e^{-2}}
$$

o Example: Find the marginal density functions when the joint density function is given by

$$
f_{X, Y}(x, y)=x e^{-x(y+1)} u(x) u(y)
$$

- Solution:

$$
\begin{aligned}
& f_{X}(x)=\int_{0}^{\infty} x e^{-x(y+1)} u(x) d y=x e^{-x} u(x) \int_{0}^{\infty} e^{-x y} d y \\
&=x e^{-x} u(x)(1 / x)=e^{-x} u(x) \\
& \text { and } \\
& f_{Y}(y)=\int_{0}^{\infty} x e^{-x(y+1)} u(y) d x=\frac{1}{(y+1)^{2}} u(y)
\end{aligned}
$$

Statistical Independence

\checkmark The two random variables X and Y are called statistically independent if

$$
\begin{gathered}
F_{X, Y}(x, y)=F_{X}(x) F_{Y}(y) \\
\text { Or } \\
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)
\end{gathered}
$$

- Example: For previous example

$$
\begin{aligned}
& f_{X, Y}(x, y)=x e^{-x(y+1)} u(x) u(y) \\
& f_{X}(x)=e^{-x} u(x) \quad \text { and } \quad f_{Y}(y)=\frac{1}{(y+1)^{2}} u(y)
\end{aligned}
$$

- Solution:

$$
f_{X}(x) f_{Y}(y)=\frac{e^{-x}}{(y+1)^{2}} u(x) u(y) \neq f_{X, Y}(x, y)
$$

Therefore, the random variables X and Y are not independent.

- Example: The joint density of two random variables X and Y is

$$
f_{X, Y}(x, y)=\frac{1}{12} e^{-(x / 4)-(y / 3)} u(x) u(y)
$$

Determine if X and Y are independent.

- Solution:

$$
\begin{gathered}
f_{X}(x)=\int_{0}^{\infty}(1 / 12) e^{-x / 4} e^{-y / 3} u(x) d y=\frac{1}{4} e^{-x / 4} u(x) \\
f_{Y}(y)=\int_{0}^{\infty}(1 / 12) e^{-x / 4} e^{-y / 3} u(y) d x=\frac{1}{3} e^{-y / 3} u(y) \\
f_{X}(x) f_{Y}(y)=f_{X, Y}(x, y)
\end{gathered}
$$

Therefore, the random variables X and Y are independent.

Distribution and Density of a Sum of Random Variables

\checkmark If W be a random variable equal to the sum of two independent random variables \mathbf{X} and \mathbf{Y} :

$$
W=X+Y
$$

Then the density function of W is the convolution of their density functions

$$
f_{W}(w)=\int_{-\infty}^{\infty} f_{Y}(y) f_{X}(w-y) d y=f_{X}(x) * f_{Y}(y)
$$

- Example: Find the density of $W=X+Y$ where

$$
\begin{aligned}
& f_{X}(x)=\frac{1}{a}[u(x)-u(x-a)] \\
& f_{Y}(y)=\frac{1}{b}[u(y)-u(y-b)] \\
& \text { with } 0<a<b
\end{aligned}
$$

- Solution:

$$
f_{W}(w)=\int_{-\infty}^{\infty} f_{Y}(y) f_{X}(w-y) d y
$$

Central Limit Theorem

\checkmark The central limit theorem says that the probability distribution function of the sum of a large number of random variables approaches a Gaussian distribution

- Example:

$$
\begin{aligned}
& f_{x}(x)=\frac{1}{a}[u(x)-u(x-a)] \\
& f_{x}(x)=\frac{1}{a}[u(x)-u(x-a)]
\end{aligned}
$$

Examples

－Example：If the joint probability density of \mathbf{X} and \mathbf{Y} is given by

$$
f(x, y)= \begin{cases}x+y & \text { for } 0<x<1,0<y<1 \\ 0 & \text { elsewhere }\end{cases}
$$

Find the joint distribution function of these two random variables．
－Solution
次If either $x<0$ or $y<0$ ，it follows immediately that $F(x, y)=0$
资For $0<x<1$ and $0<y<1$（Region I of Figure），we get

$$
F(x, y)=\int_{0}^{y} \int_{0}^{x}(s+t) d s d t=\frac{1}{2} x y(x+y)
$$

救For $x>1$ and $0<y<1$（Region II of Figure），we get

$$
F(x, y)=\int_{0}^{y} \int_{0}^{1}(s+t) d s d t=\frac{1}{2} y(y+1)
$$

Figure: Diagram for Example
摂For $0<x<1$ and $y>1$ (Region III of Figure), we get

$$
F(x, y)=\int_{0}^{1} \int_{0}^{x}(s+t) d s d t=\frac{1}{2} x(x+1)
$$

录for $x>1$ and $y>1$ (Region IV of Figure), we get

$$
F(x, y)=\int_{0}^{1} \int_{0}^{1}(s+t) d s d t=1 \quad F(x, y)= \begin{cases}0 & \text { for } x \leqq 0 \text { or } y \leqq 0 \\ \frac{1}{2} x y(x+y) & \text { for } 0<x<1,0<y<1 \\ \frac{1}{2} y(y+1) & \text { for } x \geqq 1,0<y<1 \\ \frac{1}{2} x(x+1) & \text { for } 0<x<1, y \geqq 1 \\ 1 & \text { for } x \geqq 1, y \geqq 1\end{cases}
$$

- Example: Given the joint probability density

$$
f(x, y)= \begin{cases}\frac{2}{3}(x+2 y) & \text { for } 0<x<1,0<y<1 \\ 0 & \text { elsewhere }\end{cases}
$$

Find the marginal densities of \mathbf{X} and \mathbf{Y}.

- Solution

$$
g(x)=\int_{-\infty}^{\infty} f(x, y) d y=\int_{0}^{1} \frac{2}{3}(x+2 y) d y=\frac{2}{3}(x+1)
$$

for $0<x<1$ and $g(x)=0$ elsewhere

$$
h(y)=\int_{-\infty}^{\infty} f(x, y) d x=\int_{0}^{1} \frac{2}{3}(x+2 y) d x=\frac{1}{3}(1+4 y)
$$

for $0<y<1$ and $h(y)=0$ elsewhere.

- Example: Given the joint probability table, find the conditional distribution of \mathbf{X} given $\mathbf{Y}=1$

- Solution

$$
\begin{aligned}
& f(0 \mid 1)=\frac{\frac{2}{9}}{\frac{7}{18}}=\frac{4}{7} \\
& f(1 \mid 1)=\frac{\frac{1}{6}}{\frac{7}{18}}=\frac{3}{7} \\
& f(2 \mid 1)=\frac{0}{\frac{7}{18}}=0
\end{aligned}
$$

