Philadelphia University

Lecture Notes for 650364

Probability & Random Variables

Lecture 7: Multiple Random Variables

Department of Communication & Electronics Engineering

Instructor Dr. Qadri Hamarsheh

Email:ghamarsheh@philadelphia.edu.joWebsite:http://www.philadelphia.edu.jo/academics/ghamarsheh

\checkmark **Discrete Case:** If **X** and **Y** are two discrete random variables, we define the *joint probability function* of **X** and **Y** by

$$P(X = x, Y = y) = f(x, y)$$

Where

1.
$$f(x, y) \ge 0$$

2. $\sum_{x} \sum_{y} f(x, y) = 1$

✓ Suppose that X can assume any one of m values $x_1, x_2, ..., x_m$ and Y can assume any one of n values $y_1, y_2, ..., y_n$. Then the probability of the event that $X = x_j$ and $Y = y_k$ is given by

$$P(X = x_j, Y = y_k) = f(x_j, y_k)$$

- A joint probability function for X and Y can be represented by a joint probability table
- ✓ The probability that $X = x_j$ is obtained by adding all entries in the row corresponding to x_i and is given by

$$P(X = x_j) = f_1(x_j) = \sum_{k=1}^n f(x_j, y_k)$$

Y	<i>y</i> ₁	<i>Y</i> ₂	 <i>Y</i> _n	$\stackrel{\text{Totals}}{\downarrow}$	
<i>x</i> ₁	$f(x_1, y_1)$	$f(x_1, y_2)$	 $f(x_1, y_n)$	$f_1(x_1)$	
<i>x</i> ₂	$f(x_2, y_1)$	$f(x_2, y_2)$	 $f(x_2, y_n)$	$f_1(x_2)$	
:	÷	÷	÷	÷	
X _m	$f(x_m, y_1)$	$f(x_m, y_2)$	 $f(x_m, y_n)$	$f_1(x_m)$	
Totals \rightarrow	$f_2(y_1)$	$f_2(y_2)$	 $f_2(y_n)$	1	\leftarrow Grand Total

 \checkmark Similarly the probability that $Y = y_k$ is obtained by adding all entries in the column corresponding to y_k and is given by

$$P(Y = y_k) = f_2(y_k) = \sum_{j=1}^m f(x_j, y_k)$$

✓ We often refer to $f_1(x_j)$ and $f_2(y_k)$ [or simply $f_1(x)$ and $f_2(y)$]as the *marginal probability functions* of *X* and *Y*, respectively

 \checkmark It should also be noted that

$$\sum_{j=1}^{m} f_1(x_j) = 1 \quad \sum_{k=1}^{n} f_2(y_k) = 1$$

Which can be written

$$\sum_{j=1}^{m} \sum_{k=1}^{n} f(x_j, y_k) = 1$$

✓ This is simply the statement that the total probability of all entries is
 1. The joint distribution function of X and Y is defined by

$$F(x, y) = P(X \le x, Y \le y) = \sum_{u \le x} \sum_{v \le y} f(u, v)$$

In Table, F(x, y) is the sum of all entries for which $x_j \le x$ and $y_k \le y$. \checkmark Continuous Case: the *joint probability function* for the random variables X and Y (or, as it is more commonly called, the *joint density function* of X and Y) is defined by

1.
$$f(x, y) \ge 0$$

2. $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = 1$

- ✓ Graphically z = f (x, y) represents a surface, called the probability
 surface
- \checkmark The probability that X lies between a and b while Y lies between c and d is given graphically by the shaded volume of Fig. and mathematically by

 \checkmark The *joint distribution function* of X and Y in this case is defined by

$$F(x, y) = P(X \le x, Y \le y) = \int_{u=-\infty}^{x} \int_{v=-\infty}^{y} f(u, v) du dv$$

✓ It follows in **analogy** that

$$\frac{\partial^2 F}{\partial x \, \partial y} = f(x, y)$$

i.e., the **density function** is obtained by **differentiating** the distribution function with respect to **x** and **y**.

 \checkmark The marginal distribution functions, or simply the distribution functions, of X and Y, respectively

$$P(X \le x) = F_1(x) = \int_{u=-\infty}^x \int_{v=-\infty}^\infty f(u, v) \, du \, dv$$
$$P(Y \le y) = F_2(y) = \int_{u=-\infty}^\infty \int_{v=-\infty}^y f(u, v) \, du \, dv$$

The **derivatives** of the above equations with respect to x and y are then called the *marginal density functions*, or simply the *density functions*, of X and Y and are given by

$$f_1(x) = \int_{v=-\infty}^{\infty} f(x, v) dv \qquad f_2(y) = \int_{u=-\infty}^{\infty} f(u, y) du$$

Independent Random Variables

✓ Suppose that X and Y are discrete random variables. If the events X = x and Y = y are independent events for all x and y, then we say that X and Y are independent random variables. In such case,

$$P(X = x, Y = y) = P(X = x)P(Y = y)$$
$$Or$$
$$f(x, y) = f_1(x)f_2(y)$$

- The joint probability function f (x, y) can be expressed as the product of a function of x alone and a function of y alone, X and Y are independent.
- ✓ If X and Y are continuous random variables, we say that they are *independent random variables* if the events $X \le x$ and $Y \le y$ are *independent* events for all x and y. In such case we can write

$$P(X \le x, Y \le y) = P(X \le x)P(Y \le y)$$

Or
$$F(x, y) = F_1(x)F_2(y)$$

✓ Where $F_1(x)$ and $F_2(y)$ are the marginal distribution functions of X and Y, respectively. If, however, F(x, y) cannot be so expressed as a product, then X and Y are dependent.

Conditional Distributions

 \checkmark We already know that if **P**(**A**) > **0**,

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)}$$

✓ If X and Y are discrete random variables and we have the events (A: X = x), (B: Y = y), then above equation becomes

$$P(Y = y | X = x) = \frac{f(x, y)}{f_1(x)}$$

Where f(x, y) = P(X = x, Y = y) is the joint probability function and $f_1(x)$ is the marginal probability function for X. We define

$$f(y \mid x) \equiv \frac{f(x, y)}{f_1(x)}$$

and call it the *conditional probability function* of Y given X. \checkmark Similarly, the conditional probability function of X given Y is

$$f(x \mid y) \equiv \frac{f(x, y)}{f_2(y)}$$

✓ These ideas are easily extended to the case where X, Y continuous random variables are. For example, the conditional density function of Y given X is

$$f(\mathbf{y} \mid \mathbf{x}) \equiv \frac{f(\mathbf{x}, \mathbf{y})}{f_1(\mathbf{x})}$$

Examples

- ✓ **Example 1**: The joint probability function of two discrete random variables X and Y is given by f(x, y) = c(2x + y), where x and y can assume all integers such that $0 \le x \le 2$, $0 \le y \le 3$, and f(x, y) = 0 otherwise.
 - a) Find the value of the constant *c*.
 - b) Find P(X = 2, Y = 1).
 - c) Find $P(X \ge 1, Y \le 2)$.

\circ Solution

a) The sample points (x, y) for which probabilities are different from zero are indicated in Fig. The probabilities associated with these points, given by c(2x + y), are shown in Table. Since the grand total, 42c, must equal 1, we have $c = \frac{1}{42}$.

_	16												
	XY	0	1	2	3	Totals ↓							
l	0	0	С	2c	3 <i>c</i>	6 <i>c</i>	<i>У</i> 3●	•					
	1	2c	3 <i>c</i>	4 <i>c</i>	5 <i>c</i>	14 <i>c</i>	2 •	•	•				
	2	4 <i>c</i>	5 <i>c</i>	6 <i>c</i>	7 <i>c</i>	22 <i>c</i>	1 🕈	•	•				
	Totals \rightarrow	6 <i>c</i>	9c	12 <i>c</i>	15 <i>c</i>	42 <i>c</i>	0	1	2 x				

b) From Table

$$P(X = 2, Y = 1) = 5c + \frac{5}{42}$$

c) From Table

$$P(X \ge 1, Y \le 2) = \sum_{x \ge 1} \sum_{y \le 2} f(x, y)$$

= $(2c + 3c + 4c)(4c + 5c + 6c)$
= $24c = \frac{24}{42} = \frac{4}{7}$

✓ Example 2: Find the marginal probability functions (a) of X and
 (b) of Y for the random variables of example 1.

 \circ Solution

a) The marginal probability function for X is given by $P(X = x) = f_1(x)$ and can be obtained from the margin totals in the right-hand column of the table.

$$P(X = x) = f_1(x) = \begin{cases} 6c = 1/7 & x = 0\\ 14c = 1/3 & x = 1\\ 22c = 11/21 & x = 2 \end{cases}$$

Check: $\frac{1}{7} + \frac{1}{3} + \frac{11}{21} = 1$

b) The marginal probability function for Y is given by $P(Y = y) = f_2(y)$ and can be obtained from the margin totals in the last row of the table.

$$P(Y = y) = f_2(y) = \begin{cases} 6c = 1/7 & y = 0\\ 9c = 3/14 & y = 1\\ 12c = 2/7 & y = 2\\ 15c = 5/14 & y = 3 \end{cases}$$

Check: $\frac{1}{7} + \frac{3}{14} + \frac{2}{7} + \frac{5}{14} = 1$

Example 3: Show that the random variables X and Y of example 1 are dependent.

\circ Solution

If the random variables X and Y are independent, then

$$P(X = x, Y = y) = P(X = x)P(Y = y)$$

But, as seen from example 1 and example 2 $% \left({{{\mathbf{r}}_{\mathrm{s}}}} \right)$

$$P(X = 2, Y = 1) = \frac{5}{42}$$
 $P(X = 2) = \frac{11}{21}$ $P(Y = 1) = \frac{3}{14}$

So that

$$P(X = 2, Y = 1) \neq P(X = 2)P(Y = 1)$$

The result also follows from the fact that the joint probability function (2x + y)/42 cannot be expressed as a function of x alone times a function of y alone.

Example 4: The **joint density function** of two continuous random variables X and Y is

$$f(x, y) = \begin{cases} cxy & 0 < x < 4, 1 < y < 5\\ 0 & \text{otherwise} \end{cases}$$

- a) Find the value of the constant *c*.
- b) Find P(1 < X < 2, 2 < Y < 3).
- c) Find $P(X \ge 3, Y \le 2)$.

 \circ Solution

a) We must have the total probability equal to 1, i.e.,

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \, dx \, dy = 1$$

Using the definition of f(x, y), the integral has the value

$$\int_{x=0}^{4} \int_{y=1}^{5} cxy \, dx \, dy = c \int_{x=0}^{4} \left[\int_{y=1}^{5} xy \, dy \right] dx$$
$$= c \int_{z=0}^{4} \frac{xy^2}{2} \Big|_{y=1}^{5} dx = c \int_{x=0}^{4} \left(\frac{25x}{2} - \frac{x}{2} \right) dx$$
$$= c \int_{x=0}^{4} 12x \, dx = c(6x^2) \Big|_{x=0}^{4} = 96c$$

Then
$$96c = 1$$
 and $c = 1/96$.

(b) Using the value of c found in (a), we have

$$P(1 < X < 2, 2 < Y < 3) = \int_{x=1}^{2} \int_{y=2}^{3} \frac{xy}{96} dx dy$$

$$= \frac{1}{96} \int_{x=1}^{2} \left[\int_{y=2}^{3} xy dy \right] dx = \frac{1}{96} \int_{x=1}^{2} \frac{xy^{2}}{2} \Big|_{y=2}^{3} dx$$

$$= \frac{1}{96} \int_{x=1}^{2} \frac{5x}{2} dx = \frac{5}{192} \left(\frac{x^{2}}{2} \right) \Big|_{1}^{2} = \frac{5}{128}$$

(c)
$$P(X \ge 3, Y \le 2) = \int_{x=3}^{4} \int_{y=1}^{2} \frac{xy}{96} dx dy$$
$$= \frac{1}{96} \int_{x=3}^{4} \left[\int_{y=1}^{2} xy dy \right] dx = \frac{1}{96} \int_{x=3}^{4} \frac{xy^2}{2} \Big|_{y=1}^{2} dx$$
$$= \frac{1}{96} \int_{x=3}^{4} \frac{3x}{2} dx = \frac{7}{128}$$

✓ Example 5: Find the marginal distribution functions (a) of X and
 (b) of Y for example 4.

\circ Solution

a) The marginal distribution function for X if $0 \le x < 4$ is

$$F_{1}(x) = P(X \le x) = \int_{u=-\infty}^{x} \int_{v=-\infty}^{\infty} f(u, v) \, du \, dv$$
$$= \int_{u=0}^{x} \int_{v=1}^{5} \frac{uv}{96} \, du \, dv$$
$$= \frac{1}{96} \int_{u=0}^{x} \left[\int_{v=1}^{5} uv \, dv \right] \, du = \frac{x^{2}}{16}$$

For $x \ge 4$, $F_1(x) = 1$; for x < 0, $F_1(x) = 0$. Thus

$$F_1(x) = \begin{cases} 0 & x < 0 \\ x^{2/16} & 0 \le x < 4 \\ 1 & x \ge 4 \end{cases}$$

b) The marginal distribution function for **Y** if $1 \le y < 5$ is

$$F_{2}(y) = P(Y \le y) = \int_{u=-\infty}^{\infty} \int_{v=1}^{y} f(u, v) du dv$$
$$= \int_{u=0}^{4} \int_{v=1}^{y} \frac{uv}{96} du dv = \frac{y^{2} - 1}{24}$$

For
$$y \ge 5$$
, $F_2(y) = 1$. For $y < 1$, $F_2(y) = 0$. Thus

$$F_2(y) = \begin{cases} 0 & y < 1 \\ (y^2 - 1)/24 & 1 \le y < 5 \\ 1 & y \ge 5 \end{cases}$$

✓ **Example 6**: Find (a) f(y|2), (b) P(Y = 1|X = 2) for the distribution of example 1

• Solution: Using the result in example 1 and example 2, we have:

(a)

$$f(y|x) = \frac{f(x, y)}{f_1(x)} = \frac{(2x + y)/42}{f_1(x)}$$
so that with $x = 2$

$$f(y|2) = \frac{(4 + y)/42}{11/21} = \frac{4 + y}{22}$$
(b)

$$P(Y = 1 | X = 2) = f(1|2) = \frac{5}{22}$$

 \checkmark **Example 7**: If X and Y have the joint density function

 $f(x, y) = \begin{cases} \frac{3}{4} + xy & 0 < x < 1, 0 < y < 1\\ 0 & \text{otherwise} \end{cases}$ Find (a) f(y|x), (b) $P(Y > \frac{1}{2} | \frac{1}{2} < X < \frac{1}{2} + dx)$ \circ Solution:

(a) For
$$0 < x < 1$$
,

$$f_{1}(x) = \int_{0}^{1} \left(\frac{3}{4} + xy\right) dy = \frac{3}{4} + \frac{x}{2}$$
and

$$f(y|x) = \frac{f(x, y)}{f_{1}(x)} = \begin{cases} \frac{3 + 4xy}{3 + 2x} & 0 < y < 1\\ 0 & \text{other } y \end{cases}$$
For other values of $x, f(y|x)$ is not defined.
(b)

$$P(Y > \frac{1}{2}|\frac{1}{2} < X < \frac{1}{2} + dx) = \int_{1/2}^{\infty} f(y|\frac{1}{2}) dy = \int_{1/2}^{1} \frac{3 + 2y}{4} dy = \frac{9}{16}$$

Vector Random Variables

- ✓ Let X and Y denote two random variables defined on a sample space S, where specific values of X and Y are denoted by x and y. Then any ordered pair of numbers (x, y) may be considered a random point in xy plane. The point may be taken a specific value of a vector random variable.
- ✓ The plane of all points (x, y) in the ranges of X and Y may be considered a new sample space called a **joint sample space** S_J .

 \checkmark As in the case of one random variable, let us define events ${\tt A}$ and ${\tt B}$ by

$$A = \{X \le x\} \qquad \text{and} \qquad B = \{Y \le y\}$$

✓ The event $A \cap B$ defined on S corresponds to the joint event $\{X \le x \text{ and } Y \le y\}$ defined on S_J .

Joint Distribution and its Properties

✓ The probabilities of the two events $A = {X \le x}$ and $B = {Y \le y}$ have distribution functions:

$$F_X(x) = P\{X \le x\}$$
 and $F_Y(y) = P\{Y \le y\}$

✓ We define the probability of the joint event $\{X \le x \text{ and } Y \le y\}$ by a joint probability distribution function

$$F_{X,Y}(x,y) = P\{X \le x, Y \le y\}$$

 \checkmark It should be clear that

$$P\{X \le x, Y \le y\} = P(A \cap B)$$

 \checkmark Example: Assume that the joint sample space S_J has only three possible elements (1,1), (2,1), and (3,3). The probabilities of these elements are to be P(1,1)=0.2, P(2,1)=0.3, and P(3,3)=0.5

 \circ The distribution function:

$$F_{X,Y}(x, y) = 0.2u(x-1)u(y-1) + 0.3u(x-2)u(y-1) + 0.5u(x-3)u(y-3)$$

✓ Joint Distribution for Discrete Random Variables:

 \circ The joint distribution function of discrete random variables X and Y is given by:

$$F_{X,Y}(x,y) = \sum_{n=1}^{N} \sum_{m=1}^{M} P(x_n, y_m) u(x - x_n) u(y - y_m)$$

• Example:

$$F_{X,Y}(x, y) = 0.2u(x-1)u(y-1) + 0.3u(x-2)u(y-1) + 0.5u(x-3)u(y-3)$$

✓ **Properties of the Joint Distribution:**

1.
$$F_{X,Y}(-\infty, -\infty) = 0$$
, $F_{X,Y}(-\infty, y) = 0$, $F_{X,Y}(x, -\infty) = 0$
2. $F_{X,Y}(\infty, \infty) = 1$
3. $0 \le F_{X,Y}(x, y) \le 1$
4. $F_{X,Y}(x, y)$ is a nondecreasing function
5. $P\{x_1 < X \le x_2, y_1 < Y \le y_2\} = F_{X,Y}(x_2, y_2) + F_{X,Y}(x_1, y_1) - F_{X,Y}(x_2, y_1) - F_{X,Y}(x_1, y_2)$
6. $F_{X,Y}(x, \infty) = F_X(x)$ and $F_{X,Y}(\infty, y) = F_Y(y)$

✓ Marginal Distribution Functions:

 Property 6 above states that the marginal distribution functions obtained by

$$F_X(x) = F_{X,Y}(x,\infty)$$
 and $F_Y(y) = F_{X,Y}(\infty, y)$

• **Example**:

$$F_{X,Y}(x, y) = 0.2u(x-1)u(y-1) + 0.3u(x-2)u(y-1) + 0.5u(x-3)u(y-3)$$

the marginal distribution functions:
$$F_X(x) = 0.2u(x-1) + 0.3u(x-2) + 0.5u(x-3)$$

$$F_Y(y) = 0.2u(y-1) + 0.3u(y-1) + 0.5u(y-3)$$

Joint Density and its Properties

✓ The joint probability density is defined by the second derivative of the joint distribution function:

$$f_{X,Y}(x,y) = \frac{\partial^2 F_{X,Y}(x,y)}{\partial x \partial y}$$

✓ Joint Density for Discrete Random Variables: The joint density function of discrete random variables X and Y is given by:

$$f_{X,Y}(x,y) = \sum_{n=1}^{N} \sum_{m=1}^{M} P(x_n, y_m) \delta(x - x_n) \delta(y - y_m)$$

- Example: Assume that the joint sample space S_J has only three possible elements (1,1), (2,1), and (3,3). The probabilities of these elements are to be P(1,1)=0.2, P(2,1)=0.3, and P(3,3)=0.5
 - The **density function**:

$$f_{X,Y}(x,y) = 0.2\delta(x-1)\delta(y-1) + 0.3\delta(x-2)\delta(y-1) + 0.5\delta(x-3)\delta(y-3)$$

 \checkmark Properties of the Joint Density:

1.
$$f_{X,Y}(x, y) \ge 0$$

2. $\int_{-\infty}^{\infty} \int_{X,Y}^{\infty} f_{X,Y}(x, y) dx dy = 1$
3. $F_{X,Y}(x, y) = \int_{-\infty-\infty}^{y} \int_{x,Y}^{x} f_{X,Y}(\xi_1, \xi_2) d\xi_1 d\xi_2$
4. $F_X(x) = \int_{-\infty-\infty}^{x} \int_{X,Y}^{\infty} f_{X,Y}(\xi_1, \xi_2) d\xi_2 d\xi_1$ Marginal Distribution $F_Y(y) = \int_{-\infty-\infty}^{y} \int_{x,Y}^{\infty} f_{X,Y}(\xi_1, \xi_2) d\xi_1 d\xi_2$
5. $P\{x_1 < X \le x_2, y_1 < Y \le y_2\} = \int_{y_1}^{y_2} \int_{x_1}^{x_2} f_{X,Y}(x, y) dx dy$

6.
$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) dy$$

 $f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) dx$
Marginal Density
Functions

✓ Marginal Density Functions:

 \odot Property 6 above states that the marginal distribution functions obtained by

$$f_X(x) = \frac{dF_X(x)}{dx}$$
 and $f_Y(y) = \frac{dF_Y(y)}{dy}$

• Example:

$$F_{X,Y}(x, y) = 0.2u(x-1)u(y-1) + 0.3u(x-2)u(y-1) + 0.5u(x-3)u(y-3)$$

the marginal density functions:

$$\begin{split} f_X(x) &= 0.2\delta(x-1) + 0.3\delta(x-2) + 0.5\delta(x-3) \\ f_Y(y) &= 0.2\delta(y-1) + 0.3\delta(y-1) + 0.5\delta(y-3) \\ &= 0.5\delta(y-1) + 0.5\delta(y-3) \end{split}$$

• **Example**: Find the value of b so that the following function is a valid joint density function

$$g(x, y) = \begin{cases} be^{-x}\cos(y) & 0 \le x \le 2 \text{ and } 0 \le y \le \pi/2 \\ 0 & \text{all other } x \text{ and } y \end{cases}$$

Solution:

$$\int_{0}^{\pi/2} \int_{0}^{2} be^{-x} \cos(y) dx dy = b \int_{0}^{2} e^{-x} dx \int_{0}^{\pi/2} \cos(y) dy$$
$$= b(1 - e^{-2}) = 1$$
then
$$b = \frac{1}{1 - e^{-2}}$$

• **Example**: Find the marginal density functions when the joint density function is given by

$$f_{X,Y}(x,y) = xe^{-x(y+1)}u(x)u(y)$$

Solution:

$$f_{X}(x) = \int_{0}^{\infty} x e^{-x(y+1)} u(x) dy = x e^{-x} u(x) \int_{0}^{\infty} e^{-xy} dy$$

= $x e^{-x} u(x)(1/x) = e^{-x} u(x)$
and
$$f_{Y}(y) = \int_{0}^{\infty} x e^{-x(y+1)} u(y) dx = \frac{1}{(y+1)^{2}} u(y)$$

Statistical Independence

 \checkmark The two random variables X and Y are called statistically independent if

$$F_{X,Y}(x,y) = F_X(x)F_Y(y)$$

Or

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$

• **Example**: For previous example

$$f_{X,Y}(x,y) = xe^{-x(y+1)}u(x)u(y)$$

$$f_X(x) = e^{-x}u(x) \quad and \quad f_Y(y) = \frac{1}{(y+1)^2}u(y)$$

Solution:

$$f_X(x)f_Y(y) = \frac{e^{-x}}{(y+1)^2}u(x)u(y) \neq f_{X,Y}(x,y)$$

Therefore, the random variables X and Y are **not independent**.

• **Example**: The joint density of two random variables X and Y is

$$f_{X,Y}(x,y) = \frac{1}{12} e^{-(x/4) - (y/3)} u(x) u(y)$$

Determine if X and Y are independent.

Solution:

$$f_X(x) = \int_0^\infty (1/12)e^{-x/4}e^{-y/3}u(x)dy = \frac{1}{4}e^{-x/4}u(x)$$

$$f_Y(y) = \int_0^\infty (1/12)e^{-x/4}e^{-y/3}u(y)dx = \frac{1}{3}e^{-y/3}u(y)$$

$$f_X(x)f_Y(y) = f_{X,Y}(x,y)$$

Therefore, the random variables X and Y are independent.

Distribution and Density of a Sum of Random Variables

 \checkmark If W be a random variable equal to the sum of two independent random variables X and Y:

$$W = X + Y$$

Then the density function of W is the **convolution** of their density functions

$$f_{W}(w) = \int_{-\infty}^{\infty} f_{Y}(y) f_{X}(w - y) dy = f_{X}(x) * f_{Y}(y)$$

 \circ **Example**: Find the density of W = X + Y where

• Solution: $f_W(w) = \int_{-\infty}^{\infty} f_Y(y) f_X(w-y) dy$

Central Limit Theorem

- ✓ The central limit theorem says that the probability distribution function of the sum of a large number of random variables approaches a Gaussian distribution
 - Example:

$$f_x(x) = \frac{1}{a} \left[u(x) - u(x - a) \right]$$
$$f_y(y) = \frac{1}{a} \left[u(y) - u(y - a) \right]$$

Examples

• **Example**: If the joint probability density of **X** and **Y** is given by

$$f(x, y) = \begin{cases} x + y & \text{for } 0 < x < 1, 0 < y < 1\\ 0 & \text{elsewhere} \end{cases}$$

Find the **joint distribution function** of these two random variables.

Solution

*If either x<0 or y<0, it follows immediately that F(x, y) = 0*For 0<x<1 and 0<y<1 (Region I of Figure), we get

$$F(x,y) = \int_0^y \int_0^x (s+t) \, ds \, dt = \frac{1}{2} x y (x+y)$$

%For x>1 and 0<y<1 (Region II of Figure), we get</pre>

$$F(x,y) = \int_0^y \int_0^1 (s+t) \, ds \, dt = \frac{1}{2}y(y+1)$$

Figure: Diagram for Example & For **0<x<1** and **y>1** (Region III of Figure), we get

$$F(x,y) = \int_0^1 \int_0^x (s+t) \, ds \, dt = \frac{1}{2}x(x+1)$$

% for x>1 and y>1 (Region IV of Figure), we get

$$F(x,y) = \int_0^1 \int_0^1 (s+t) \, ds \, dt = 1$$

$$F(x,y) = \begin{cases} 0 & \text{for } x \le 0 \text{ or } y \le 0 \\ \frac{1}{2}xy(x+y) & \text{for } 0 < x < 1, 0 < y < 1 \\ \frac{1}{2}y(y+1) & \text{for } x \ge 1, 0 < y < 1 \\ \frac{1}{2}x(x+1) & \text{for } 0 < x < 1, y \ge 1 \\ 1 & \text{for } x \ge 1, y \ge 1 \end{cases}$$

• **Example**: Given the joint probability density

 $f(x, y) = \begin{cases} \frac{2}{3}(x + 2y) & \text{for } 0 < x < 1, 0 < y < 1\\ 0 & \text{elsewhere} \end{cases}$

Find the marginal densities of \mathbf{X} and \mathbf{Y} .

Solution

$$g(x) = \int_{-\infty}^{\infty} f(x, y) \, dy = \int_{0}^{1} \frac{2}{3} (x + 2y) \, dy = \frac{2}{3} (x + 1)$$

for **0<x<1** and **g(x) = 0** elsewhere

$$h(y) = \int_{-\infty}^{\infty} f(x, y) \, dx = \int_{0}^{1} \frac{2}{3} (x + 2y) \, dx = \frac{1}{3} (1 + 4y)$$

for 0 < y < 1 and h(y) = 0 elsewhere.

Example: Given the joint probability table, find the conditional distribution of X given Y = 1

Solution

